Subscribe:

domingo, 28 de octubre de 2012

RESOLUCIÓN DE SISTEMAS DE ECUACIONES

MÉTODOS RESOLUCIÓN DE SISTEMAS DE ECUACIONES:


Resolver un sistema de ecuaciones lineales es encontrar todas sus soluciones.
Los métodos de igualación, sustitución y reducción consisten en encontrar y resolver, para cada una de las incognitas, una ecuación con esa incognita y con ninguna otra ( convirtiendo así un problema dificil en uno mas facil, ¿no?).
A estas ecuaciones, con solo una incognita, se llega a traves de una serie de pasos en los que las ecuaciones intermedias que se van obteniendo tienen menos incognitas que las ecuaciones previas.
Así, es posible que en uno de estos pasos de eliminación de incognitas se utilize un método ( el de reducción, por ejemplo ) y que, en el siguiente paso, se utilize otro método ( el de igualación, por ejemplo ).
Cada vez que se encuentra la solución para una incognita, se sustituye esta incognita por su solución para obtener asi ecuaciones con menos incognitas.
Los métodos de iguAlación, sustitución, reducción y Gauss se pueden utilizar para resolver sistemas de ecuaciones compatibles determinados e indeterminados.
Estos mismos métodos tambien pueden utilizarse para comprobar si un sistema de ecuaciones es compatible o no. La utilizacion de cualquiera de ellos conduciria, en el caso de que el sistema fuese incompatible, a una igualdad que es falsa, por ejemplo:

2 = 3
El método de la matriz inversa y la regla de Cramer solo se pueden utilizar en el caso de que el sistema de ecuaciones lineales sea compatible determinado.



METODO DE REDUCCION:
Consiste en multiplicar ecuaciones por numeros y sumarlas para reducir el número de incognitas hasta llegar a ecuaciones con solo una incognita.

Multiplicar una ecuación por un número consiste en multiplicar ambos miembros de la ecuación por dicho número.

Sumar dos ecuaciones consiste en obtener una nueva ecuación cuyo miembro derecho ( izquierdo ) es la suma de los miembros derechos ( izquierdos ) de las ecuaciones que se suman.


 Ejemplo



\left\{
\begin{array}{l}
</p>
<pre> 5x - 3y = 2
 \\
 3x - 4y = -1
</pre>
<p>\end{array}
\right.
Multiplicando la primera ecuación por 3 y la segunda por -5, se obtienen las ecuaciones

\left\{
\begin{array}{l}
</p>
<pre> 15x - 9y = 6
 \\
 -15x + 20y = 5
</pre>
<p>\end{array}
\right.
El sumar ambas ecuaciones nos da la ecuación

11y = 11
que es una ecuación con una sola incognita y cuya solución es

y = 1
La elección de los factores 3 y -5 se ha hecho precisamente para que la 
x
 desaparezca al sumar ambas ecuaciones.

Sutituyendo  y   por uno en la primera ecuación del sistema de ecuaciones de partida, se obtiene

5x - 3 = 2
que es otra ecuación con una sola incognita y cuya solución es   
x = 1
.



METODO DE IGUALACION:
El método de igualación consiste en lo siguiente:

Supongamos que tenemos dos ecuaciones:

\left\{ 
\begin{array}{l}
a = b 
\\
a = c
\item \end{array}
\right.
donde 
a

b
, y 
c
 representan simplemente los miembros de estas ecuaciones ( son expresiones algebraicas ).

De las dos igualdades anteriores se deduce que

b = c
Si resulta que una incognita del sistema de ecuaciones no aparece ni en 
a
 ni en 
b
, entonces la ecuación

b = c
no contendría dicha incognita.

Este proceso de eliminación de incognitas se puede repetir varias veces hasta llegar a una ecuación con solo una incognita, digamos 
x
 .

Una vez que se obtiene la solución de esta ecuación se sustituye 
x
 por su solución en otras ecuaciones dode aparezca 
x
 para reducir el número de incognitas en dichas ecuaciones.


Ejemplo


El sistema de ecuaciones

\left\{
\begin{array}{l}
</p>
<pre> 2x - 3y = -1
 \\
 2x + 4y = 6
</pre>
<p>\end{array}
\right.
es equivalente a este otro

\left\{
\begin{array}{l}
</p>
<pre> 2x = -1 + 3y
 \\
 2x = 6 -4y
</pre>
<p>\end{array}
\right.
El segundo sistema lo he obtenido pasando los terminos en 
y
 del miembro de la izquierda al miembro de la derecha en cada una de las ecuaciones del primer sistema.

Del segundo sistema se deduce que

-1 + 3y = 6 - 4y
que es una ecuación con una sola incognita cuya solución es   
y = 1
.

Sustituyendo 
y
 por 1 en la primera ecuación del sistema de partida se tiene que

2x - 3 = -1
que es una ecuación con una sola incognita y cuya solución es   
x = 1
.



METODO DE SUSTITUCION:
Supongamos que un sistema de ecuaciones se puede poner de la forma

\left\{ 
\begin{array}{l}
</p>
<pre> a \cdot b + c = d
 \\
 a + e = f
</pre>
<p>\end{array}
\right.
Entonces podemos despejar 
a
 en la segunda ecuación y sustituirla en la primera, para obtener la ecuación:

\left( \, f - e \, \right) \cdot b + c = d
Lo que se busca es que esta ecuación dependa de menos incognitas que las de partida.

Aqui   
a, \, b, \, c, \, d, \, e 
   y   
f
   son expresiones algebraicas de las incognitas del sistema.


 Ejemplo


Intentemos resolver

\left\{
\begin{array}{l}
</p>
<pre> 4x + 3y = 7
 \\
 2x - y = 1
</pre>
<p>\end{array}
\right.
La primera ecuación se puede reescribir de la forma

2 \cdot \left( \, 2x \, \right) + 3y = 7
Por otra parte, de la segunda ecuación del sistema se deduce que

2x = 1 + y
Sustituyendo   
2x
   por 
1 + y
 en

2 \cdot \left( \, 2x \, \right) + 3y = 7
se tiene que

2 \cdot \left( \, 1 + y \, \right)+ 3y = 7
que es una ecuación con solo una incognita y cuya solución es 
y = 1
.

Sustituyendo 
y
 por uno en la primera ecuación del sistema de ecuaciones de partida obtenemos una ecuación de una sola incognita

4 + 3y = 7
cuya solución es   
x = 1
.


METODO DE GAUSS:
El método de Gauss consiste en transformar el sistema dado en otro equivalente. Para ello tomamos la matriz ampliada del sistema y mediante las operaciones elementales con sus filas la transformamos en una matriz triangular superior ( o inferior ). De esta forma obtenemos un sistema equivalente al inicial y que es muy facil de resolver.

Es esencialmente el método de reducción. En el método de Gauss se opera con ecuaciones, como se hace en el método de reducción, pero uno se ahorra el escribir las incognitas porque al ir los coeficientes de una misma incognita siempre en una misma columna, uno sabe en todo momento cual es la incognita a la que multiplican.


 Ejemplo


La matriz ampliada del sistema de ecuaciones:


\left\{
</p>
<pre> \begin{array}[c]{ccc}
   x \, + \, y \, + \, z & = & ~~3
   \\
   x \, + \, y \, - \, z & = & ~~1
   \\
   x \, - \, y \, - \, z & = & -1
 \end{array}
</pre>
<p>\right.

es:


\left(
</p>
<pre> \left.  
   \begin{array}[c]{ccc}
     ~~1 & ~~1 & ~~1
     \\
     ~~1 & ~~1 & -1
     \\
     ~~1 & -1 & -1
   \end{array}
 \right|
 \begin{array}[c]{c}
   ~~3
   \\
   ~~1
   \\
   -1
 \end{array}
</pre>
<p>\right)

Si a la tercera y segunda fila le restamos la primera, obtenemos:


\left(
</p>
<pre> \left.  
   \begin{array}[c]{ccc}
     ~~1 & ~~1 & ~~1
     \\
     ~~0 & ~~0 & -2
     \\
     ~~0 & -2 & -2
   \end{array}
 \right|
 \begin{array}[c]{c}
   ~~3
   \\
   -2
   \\
   -4
 \end{array}
</pre>
<p>\right)

Lo que acabamos de hacer es equivalente a restar a la tercera y segunda ecuación la primera.

Si ahora intercambiamos la segunda y tercera filas ( ecuaciones ), obtenemos la siguiente matriz triangular superior:


\left(
</p>
<pre> \left.  
   \begin{array}[c]{ccc}
     ~~1 & ~~1 & ~~1
     \\
     ~~0 & -2 & -2
     \\
     ~~0 & ~~0 & -2
   \end{array}
 \right|
 \begin{array}[c]{c}
   ~~3
   \\
   -4
   \\
   -2
 \end{array}
</pre>
<p>\right)

que es la matriz ampliada del sistema de ecuaciones:


\left\{
</p>
<pre> \begin{array}[c]{rcl}
   x \, + \, y \, + \, z & = & ~~3
   \\
   -2y \, - \, 2z & = & -4
   \\
   -2z & = & -2
 \end{array}
</pre>
<p>\right.

que es equivalente al inicial.

Solucionamos la tercera ocuacion para obtener   
z
  :


z \, = \, 1

En la primera y segunda ecuación, sustituimos   
z
   por la solucion de la tercera ecuación   (   
1 \to z
   ), para obtener:


\left\{
</p>
<pre> \begin{array}[c]{rcl}
   x \, + \, y \, + \, 1 & = & ~~3
   \\
   -2y \, - \, 2 & = & -4
 \end{array}
</pre>
<p>\right.

La segunda ecuación es ahora una ecuación con una sola incognita,   
y
 , que resolvemos para obtener   
y \, = \, 1
 .   Sustituimos, en la primera ecuación,   
y
   por 1   (   
1 \to y
   ). Esto nos da una ecuación en   
x
  :


x \, + \, 1 \, + \, 1 \, = \, 3

que al resolverla termina de darnos la solución del sistema de ecuaciones inicial:


x \, = \, y \, = \, z \, = \, 1



0 comentarios:

Publicar un comentario