Subscribe:

sábado, 3 de noviembre de 2012

IDENTIDADES TRIGONOMETRICAS

IDENTIDADES TRIGONOMÉTRICAS:

Una identidad trigonométrica es una igualdad entre expresiones que contienen funciones trigonométricas y es válida para todos los valores del ángulo en los que están definidas las funciones (y las operaciones aritméticas involucradas).

IDENTIDADES BASICAS:

PUNTOS MAXIMOS Y PUNTOS MINIMOS:

PUNTOS MAXIMOS Y PUNTOS MINIMOS:


MAXIMOS Y MINIMOS RELATIVOS

Con cierta frecuencia nos encontramos con la necesidad de buscar la mejor forma de hacer algo. En muchas ocasiones a través de los poderosos mecanismos de cálculo diferencial es posible encontrar respuesta a estos problemas, que de otro modo parecería imposible su solución.

Entre los valores q puede tener una función (Y) puede haber uno que sea el mas grande y otro que sea el mas pequeño. A estos valores se les llama respectivamente punto máximo y punto mínimo absolutos.

Si una función continua es ascendente en un intervalo y a partir de un punto cualquiera empieza a decrecer, a ese punto se le conoce como punto critico máximo relativo, aunque comúnmente se le llama solo máximo.

Por el contrario, si una funcion continua es decreciente en cierto intervalo hasta un punto en el cual empieza a ascender, a este punto lo llamamos puntro critico minimo relativo, o simplemente minimo.

Una funcion puede tener uno, ninguno o varios puntos criticos.

Curva sin máximos ni mínimos función sin máximos ni mínimos
'Máximos y mínimos'
'Máximos y mínimos'

Función con un máximo curva con un máximo y un mínimo

Curva con un mínimo curva con varios mínimos y máximos

La pendiente de la recta tangente a una curva (derivada) en los puntos críticos máximos y mínimos relativos es cero, ya que se trata de una recta horizontal.

En los puntos críticos máximos, las funciones tienen un valor mayor que en su entorno, mientras que en los mínimos, el valor de la función es menor que en su entorno.

En un punto critico maximo relativo, al pasar la funcion de creciente a decreciente, su derivada pasa de positiva a negativa.

En un punto critico minimo relativo, la funcion deja de decrecer y empieza a ser creciente, por tanto, su derivada pasa de negativa a positiva.

METODOS PARA CALCULAR MAXIMOS Y MINIMOS DE UNA FUNCION

Para conocer las coordenadas de los puntos críticos máximos y mínimos relativos en una función, analizaremos dos mecanismos:

CRITERIO DE LA PRIMERA DERIVADA, UTILIZADO PARA UNA FUNCION CONTINUA Y SU PRIMERA DERIVADA TAMBIEN CONTINUA.

obtener la primera derivada.

igualar la primera derivada a cero y resolver la ecuación.

El valor o valores obtenidos para la variable, son donde pudiera haber máximos o mínimos en la función.

se asignan valores próximos (menores y mayores respectivamente) a la variable independiente y se sustituyen en la derivada. Se observan los resultados; cuando estos pasan de positivos a negativos, se trata de un punto máximo; si pasa de negativo a positivo el punto crítico es mínimo.

Cuando existen dos o más resultados para la variable independiente, debe tener la precaución de utilizar valores cercanos a cada uno y a la vez distante de los demás, a fin de evitar errores al interpretar los resultados.

sustituir en la función original (Y) el o los valores de la variable independiente (X) para los cuales hubo cambio de signo. Cada una de las parejas de datos así obtenidas, corresponde a las coordenadas de un punto crítico.

CRITERIO DE LA SEGUNDA DERIVADA

Este método es más utilizado que el anterior, aunque no siempre es más sencillo. Se basa en que en un máximo relativo, la concavidad de una curva es hacia abajo y en consecuencia, su derivada será negativa; mientras que en un punto mínimo relativo, la concavidad es hacia arriba y la segunda derivada es positiva.

Este procedimiento consiste en:

calcular la primera y segunda derivadas

igualar la primera derivada a cero y resolver la ecuación.

sustituir las raíces (el valor o valores de X) de la primera derivada en la segunda derivada.

Si el resultado es positivo, hay mínimo. Si la segunda derivada resulta negativa, hay un máximo.

Si el resultado fuera cero, no se puede afirmar si hay o no un máximo o mínimo.

sustituir los valores de las raíces de la primera derivada en la función original, para conocer las coordenadas de los puntos máximo y mínimo.

FUNCIONES LINEALES Y CUADRATICAS


FUNCIONES LINEALES Y CUADRÁTICAS:

FUNCIÓN LINEAL:
Una función lineal es una función cuyo dominio son todos los números reales, cuyo codominio son también todos los números reales, y cuya expresión analítica es un polinomio de primer grado.
FUNCIÓN CUADRÁTICA:
Una función cuadrática es aquella que puede escribirse como una ecuación de la forma: f(x) = ax^2 + bx + c
En la ecuación cuadrática cada uno de sus términos tiene un nombre. Así, 
ax^2 es el término cuadrático 
bx es el término lineal 
c es el término independiente


GRAFICA DE UNA FUNCION

GRAFICA DE UNA FUNCION:



  Dominio y recorrido

El dominio de una función es el conjunto de todas las coordenadas x de los puntos de la gráfica de la función, y el recorrido es el conjunto de todas las coordenadas  en el eje y.   Los valores en el dominio usualmente están asociados con el eje horizontal (el eje x) y los valores del recorrido con el eje vertical (el eje y).

Ejemplo para discusión:

Determina el dominio y el recorrido de la función f  cuya gráfica es:

Ejercicio de práctica: Determina el dominio y el recorrido de la siguiente gráfica:


Funciones crecientes, decrecientes y constantes

Definición:  Sea I in intervalo en el dominio de una función f.  Entonces:
1) f es creciente en el intervalo I si f(b)>f(a) siempre que b>a en I.
2) f es decreciente en el intervalo I si f(b)<f(a) siempre b<a en I.
3) f es constante en el intervalo I si f(b) = f(a) para todo a y b en I.

DOMINIO Y RANGO DE UNA FUNCION

DOMINIO Y RANGO DE UNA FUNCION:

DOMINIO:
Se dice que el dominio de una función son todos los valores que puede tomar el conjunto del dominio y que encuentra correspondencia en el conjunto llamado codominio, generalmente cuando se habla del plano, el dominio es el intervalo de valores que están sobre el eje de las X´s y que nos generan una asociación en el eje de las Y´s.

CODOMINIO O RANGO:
El otro conjunto que interviene en la definición es el conjunto llamado codominio o rango de la función, en ocasiones llamado imagen, este conjunto es la gama de valores que puede tomar la función; en el caso del plano son todos los valores que puede tomar la función o valores en el eje de las Y´s.

FUNCION

FUNCION:

Una función es una regla de asociación que relaciona dos o mas conjuntos entre si; generalmente cuando tenemos la asociación dos conjuntos las función se define como una regla de asociación entre un conjunto llamado dominio con uno llamado codominio, también dominio e imagen respectivamente o dominio y rango. Esta regla de asociación no permite relacionar un mismo elemento del dominio con dos elementos del codominio.

Figura 1. Definición de función que se ampara bajo una regla de asociación de elementos del dominio con elementos del codominio, imponiendo la restricción de relacionar un elemento del dominio con uno del codominio, sin importar si los elementos del codominio puedan estar relacionados con dos o mas del codominio.

GRAFICA DE NUMEROS COMPLEJOS

Gráfica de números complejos:

Los números complejos se representan en unos ejes cartesianos. El eje X se llama eje real y el Y, eje imaginario. Numero complejo. a+bi

domingo, 28 de octubre de 2012

NUMEROS COMPLEJOS:

NUMEROS COMPLEJOS:


Los números complejos son una extensión de los números reales y forman el mínimo cuerpo algebraicamente cerrado que los contiene. El conjunto de los números complejos se designa como , siendo  el conjunto de los reales se cumple que . Los números complejos incluyen todas las raíces de los polinomios, a diferencia de los reales. Todo número complejo puede representarse como la suma de un número real y un número imaginario (que es un múltiplo real de la unidad imaginaria, que se indica con la letra i).
Los números complejos son la herramienta de trabajo del álgebra ordinaria, llamada álgebra de los números complejos, así como de ramas de las matemáticas puras y aplicadas como variable compleja, aerodinámica y electromagnetismo entre otras de gran importancia. Además los números complejos se utilizan por doquier matemáticas, en muchos de la física (y notoriamente en la mecánica cuántica) y en ingeniería, especialmente en la electrónica y las telecomunicaciones, por su utilidad para representar las ondas electromagnéticas y la corriente eléctrica.
En matemáticas, los números constituyen un cuerpo y, en general, se consideran como puntos del plano: el plano complejo. La propiedad más importante que caracteriza a los números complejos es el teorema fundamental del álgebra, que afirma que cualquier ecuación algebraica de grado n tiene exactamente n soluciones complejas. Contienen a los números reales y los imaginarios puros y constituyen una de las construcciones teóricas más importantes de la inteligencia humana. Los análogos del cálculo diferencial e integral con números complejos reciben el nombre de variable compleja o análisis complejo.

SIMPLIFICACIÓN Y OPERACIONES CON NÚMEROS COMPLEJOS:


RESOLUCIÓN DE SISTEMAS DE ECUACIONES

MÉTODOS RESOLUCIÓN DE SISTEMAS DE ECUACIONES:


Resolver un sistema de ecuaciones lineales es encontrar todas sus soluciones.
Los métodos de igualación, sustitución y reducción consisten en encontrar y resolver, para cada una de las incognitas, una ecuación con esa incognita y con ninguna otra ( convirtiendo así un problema dificil en uno mas facil, ¿no?).
A estas ecuaciones, con solo una incognita, se llega a traves de una serie de pasos en los que las ecuaciones intermedias que se van obteniendo tienen menos incognitas que las ecuaciones previas.
Así, es posible que en uno de estos pasos de eliminación de incognitas se utilize un método ( el de reducción, por ejemplo ) y que, en el siguiente paso, se utilize otro método ( el de igualación, por ejemplo ).
Cada vez que se encuentra la solución para una incognita, se sustituye esta incognita por su solución para obtener asi ecuaciones con menos incognitas.
Los métodos de iguAlación, sustitución, reducción y Gauss se pueden utilizar para resolver sistemas de ecuaciones compatibles determinados e indeterminados.
Estos mismos métodos tambien pueden utilizarse para comprobar si un sistema de ecuaciones es compatible o no. La utilizacion de cualquiera de ellos conduciria, en el caso de que el sistema fuese incompatible, a una igualdad que es falsa, por ejemplo:

2 = 3
El método de la matriz inversa y la regla de Cramer solo se pueden utilizar en el caso de que el sistema de ecuaciones lineales sea compatible determinado.



METODO DE REDUCCION:
Consiste en multiplicar ecuaciones por numeros y sumarlas para reducir el número de incognitas hasta llegar a ecuaciones con solo una incognita.

Multiplicar una ecuación por un número consiste en multiplicar ambos miembros de la ecuación por dicho número.

Sumar dos ecuaciones consiste en obtener una nueva ecuación cuyo miembro derecho ( izquierdo ) es la suma de los miembros derechos ( izquierdos ) de las ecuaciones que se suman.


 Ejemplo



\left\{
\begin{array}{l}
</p>
<pre> 5x - 3y = 2
 \\
 3x - 4y = -1
</pre>
<p>\end{array}
\right.
Multiplicando la primera ecuación por 3 y la segunda por -5, se obtienen las ecuaciones

\left\{
\begin{array}{l}
</p>
<pre> 15x - 9y = 6
 \\
 -15x + 20y = 5
</pre>
<p>\end{array}
\right.
El sumar ambas ecuaciones nos da la ecuación

11y = 11
que es una ecuación con una sola incognita y cuya solución es

y = 1
La elección de los factores 3 y -5 se ha hecho precisamente para que la 
x
 desaparezca al sumar ambas ecuaciones.

Sutituyendo  y   por uno en la primera ecuación del sistema de ecuaciones de partida, se obtiene

5x - 3 = 2
que es otra ecuación con una sola incognita y cuya solución es   
x = 1
.



METODO DE IGUALACION:
El método de igualación consiste en lo siguiente:

Supongamos que tenemos dos ecuaciones:

\left\{ 
\begin{array}{l}
a = b 
\\
a = c
\item \end{array}
\right.
donde 
a

b
, y 
c
 representan simplemente los miembros de estas ecuaciones ( son expresiones algebraicas ).

De las dos igualdades anteriores se deduce que

b = c
Si resulta que una incognita del sistema de ecuaciones no aparece ni en 
a
 ni en 
b
, entonces la ecuación

b = c
no contendría dicha incognita.

Este proceso de eliminación de incognitas se puede repetir varias veces hasta llegar a una ecuación con solo una incognita, digamos 
x
 .

Una vez que se obtiene la solución de esta ecuación se sustituye 
x
 por su solución en otras ecuaciones dode aparezca 
x
 para reducir el número de incognitas en dichas ecuaciones.


Ejemplo


El sistema de ecuaciones

\left\{
\begin{array}{l}
</p>
<pre> 2x - 3y = -1
 \\
 2x + 4y = 6
</pre>
<p>\end{array}
\right.
es equivalente a este otro

\left\{
\begin{array}{l}
</p>
<pre> 2x = -1 + 3y
 \\
 2x = 6 -4y
</pre>
<p>\end{array}
\right.
El segundo sistema lo he obtenido pasando los terminos en 
y
 del miembro de la izquierda al miembro de la derecha en cada una de las ecuaciones del primer sistema.

Del segundo sistema se deduce que

-1 + 3y = 6 - 4y
que es una ecuación con una sola incognita cuya solución es   
y = 1
.

Sustituyendo 
y
 por 1 en la primera ecuación del sistema de partida se tiene que

2x - 3 = -1
que es una ecuación con una sola incognita y cuya solución es   
x = 1
.



METODO DE SUSTITUCION:
Supongamos que un sistema de ecuaciones se puede poner de la forma

\left\{ 
\begin{array}{l}
</p>
<pre> a \cdot b + c = d
 \\
 a + e = f
</pre>
<p>\end{array}
\right.
Entonces podemos despejar 
a
 en la segunda ecuación y sustituirla en la primera, para obtener la ecuación:

\left( \, f - e \, \right) \cdot b + c = d
Lo que se busca es que esta ecuación dependa de menos incognitas que las de partida.

Aqui   
a, \, b, \, c, \, d, \, e 
   y   
f
   son expresiones algebraicas de las incognitas del sistema.


 Ejemplo


Intentemos resolver

\left\{
\begin{array}{l}
</p>
<pre> 4x + 3y = 7
 \\
 2x - y = 1
</pre>
<p>\end{array}
\right.
La primera ecuación se puede reescribir de la forma

2 \cdot \left( \, 2x \, \right) + 3y = 7
Por otra parte, de la segunda ecuación del sistema se deduce que

2x = 1 + y
Sustituyendo   
2x
   por 
1 + y
 en

2 \cdot \left( \, 2x \, \right) + 3y = 7
se tiene que

2 \cdot \left( \, 1 + y \, \right)+ 3y = 7
que es una ecuación con solo una incognita y cuya solución es 
y = 1
.

Sustituyendo 
y
 por uno en la primera ecuación del sistema de ecuaciones de partida obtenemos una ecuación de una sola incognita

4 + 3y = 7
cuya solución es   
x = 1
.


METODO DE GAUSS:
El método de Gauss consiste en transformar el sistema dado en otro equivalente. Para ello tomamos la matriz ampliada del sistema y mediante las operaciones elementales con sus filas la transformamos en una matriz triangular superior ( o inferior ). De esta forma obtenemos un sistema equivalente al inicial y que es muy facil de resolver.

Es esencialmente el método de reducción. En el método de Gauss se opera con ecuaciones, como se hace en el método de reducción, pero uno se ahorra el escribir las incognitas porque al ir los coeficientes de una misma incognita siempre en una misma columna, uno sabe en todo momento cual es la incognita a la que multiplican.


 Ejemplo


La matriz ampliada del sistema de ecuaciones:


\left\{
</p>
<pre> \begin{array}[c]{ccc}
   x \, + \, y \, + \, z & = & ~~3
   \\
   x \, + \, y \, - \, z & = & ~~1
   \\
   x \, - \, y \, - \, z & = & -1
 \end{array}
</pre>
<p>\right.

es:


\left(
</p>
<pre> \left.  
   \begin{array}[c]{ccc}
     ~~1 & ~~1 & ~~1
     \\
     ~~1 & ~~1 & -1
     \\
     ~~1 & -1 & -1
   \end{array}
 \right|
 \begin{array}[c]{c}
   ~~3
   \\
   ~~1
   \\
   -1
 \end{array}
</pre>
<p>\right)

Si a la tercera y segunda fila le restamos la primera, obtenemos:


\left(
</p>
<pre> \left.  
   \begin{array}[c]{ccc}
     ~~1 & ~~1 & ~~1
     \\
     ~~0 & ~~0 & -2
     \\
     ~~0 & -2 & -2
   \end{array}
 \right|
 \begin{array}[c]{c}
   ~~3
   \\
   -2
   \\
   -4
 \end{array}
</pre>
<p>\right)

Lo que acabamos de hacer es equivalente a restar a la tercera y segunda ecuación la primera.

Si ahora intercambiamos la segunda y tercera filas ( ecuaciones ), obtenemos la siguiente matriz triangular superior:


\left(
</p>
<pre> \left.  
   \begin{array}[c]{ccc}
     ~~1 & ~~1 & ~~1
     \\
     ~~0 & -2 & -2
     \\
     ~~0 & ~~0 & -2
   \end{array}
 \right|
 \begin{array}[c]{c}
   ~~3
   \\
   -4
   \\
   -2
 \end{array}
</pre>
<p>\right)

que es la matriz ampliada del sistema de ecuaciones:


\left\{
</p>
<pre> \begin{array}[c]{rcl}
   x \, + \, y \, + \, z & = & ~~3
   \\
   -2y \, - \, 2z & = & -4
   \\
   -2z & = & -2
 \end{array}
</pre>
<p>\right.

que es equivalente al inicial.

Solucionamos la tercera ocuacion para obtener   
z
  :


z \, = \, 1

En la primera y segunda ecuación, sustituimos   
z
   por la solucion de la tercera ecuación   (   
1 \to z
   ), para obtener:


\left\{
</p>
<pre> \begin{array}[c]{rcl}
   x \, + \, y \, + \, 1 & = & ~~3
   \\
   -2y \, - \, 2 & = & -4
 \end{array}
</pre>
<p>\right.

La segunda ecuación es ahora una ecuación con una sola incognita,   
y
 , que resolvemos para obtener   
y \, = \, 1
 .   Sustituimos, en la primera ecuación,   
y
   por 1   (   
1 \to y
   ). Esto nos da una ecuación en   
x
  :


x \, + \, 1 \, + \, 1 \, = \, 3

que al resolverla termina de darnos la solución del sistema de ecuaciones inicial:


x \, = \, y \, = \, z \, = \, 1